

Progress on User Analysis on Tier-2s

lan Fisk September 25, 2008

User Analysis on Tier-2s

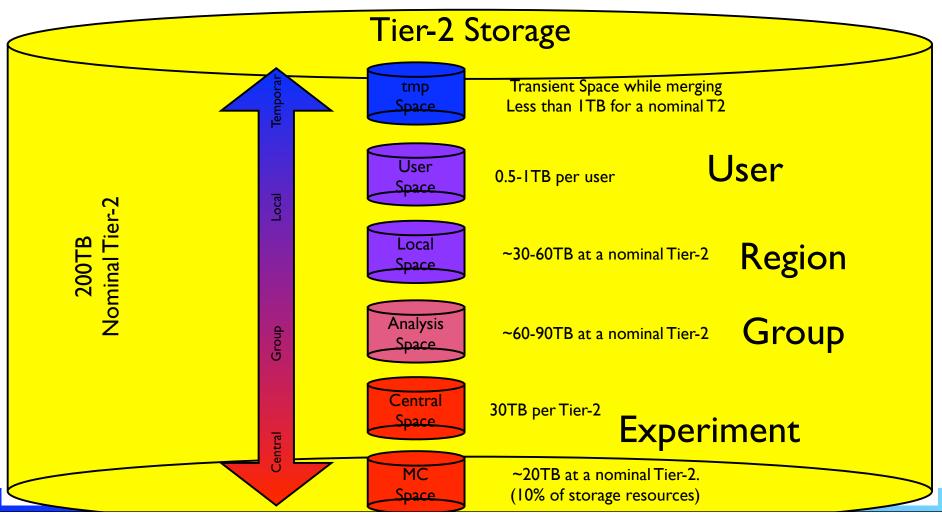
The CAF at CERN is a very valuable resources

- It will have access to the really prompt reconstruction and calibration samples the quickest
- It's useful for low latency analysis and some other very high profile tasks involving data promptly
- Unfortunately it's small

There are many Tier-2s and many of them are big

- → A nominal Tier-2 is IMSI2k and 200TB of disk
 - Half is devoted to simulation the other half to analysis
 - We already have individual Tier-2s with at least half the batch slots for analysis that the CAF has
- ➡ With the exception of the limited number of tasks that can only be done on the CAF users are going to find more resources at Tier-2s

What are we doing to make them more efficient to use



In CMS Jobs go to Data

How is the Storage managed?

Storage at Tier-2 centers is broken into 6 pieces

Transient and unmanaged to more persistent and centrally managed

Who Controls the Storage?

All numbers are for a nominal Tier-2

Central Space 30TB

- Intended for RECO samples of Primary Datasets.
 - In 2008 we had expected to be able to store 2 copies of MC and data sample using the identified T2 space

Physics Group Space 60-90TB

Assigned to I-3 physics groups. Space allocated by physics data manager. The site data manager still approves the request, but only to ensure the group is below quota

Local Storage Space 30TB-60TB

 Controlled by the local storage manager. Intended to benefit the geographically associated community

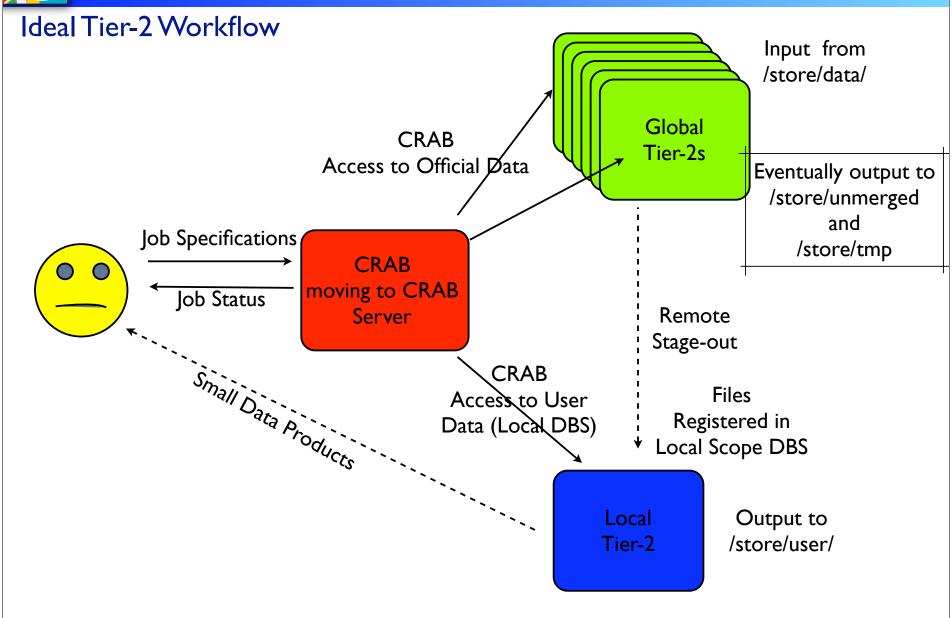
User Space 0.5-ITB per person in the geographically associated community

controlled by individuals

Motivations for User Space at Tier-2s

We need to give users a predictable space to write and Grid accessible storage

- People need places to write to that are not Castor at CERN
 - CERN Castor writes to tape
 - This uses tape resources, which we need for real data
 - User Files are often small, which is lowering the average file size on tape and the efficiency of the tape system impacts the ability to access data
 - Need to support users on disk resources at Tier-2s


The concept of keeping it on the local Tier-2 was to divide the problem

- At a nominal Tier-2 40 users are supported
- User Space is assigned at the Tier-2 geographically associated with the institution
- Keeping it by institution and local users provides us with better chance for efficient support and management.

CRAB will have the ability to stage data to /store/user and stage from it

Tier-2 Analysis Workflow

Why are we switching to CRAB Server?

Technical Improvements -

- CRAB server removes the limitations on the size of the input sandbox
- CRAB server allows the user to disconnect once the workflow is upload (Don't have to wait for many jobs to be submitted)
- Can provide better resubmission functionality

Support

CRAB server gives CMS central points were jobs are submitted through. Support people will have access to logs and configurations which should improve our user support

Tier-2 Associations to Analysis Groups

After what seems like a very long time, we have the mappings of site to analysis groups

- The process and the mapping should be revisited one we have some operational experience with high energy data
- These mappings were chosen to optimize the types of physics expected early
 - Concentration on commissioning work (DPG, POG)
 - Each country was expected to have at least 40% DPG and POG
 - Concentration on standard model analysis
 - Leave resources for search groups, but the emphasis is on commissioning work

Thomas Kress and the Tier-2 Liaisons (Giuseppe Bagliesi and Ken Bloom) as well as the Physics leadership and the Computing Resource Board were instrumental in getting us this far

Country Mappings

	T2_AT	T2_BE	T2_BR	T2_DE	T2_CH	T2_CN	T2_EE	T2_ES	T2_FI	T2_FR	T2_IT	T2_KR	T2_PT	T2_RU	T2_UK	T2_US
FWD phys				1												1
QCD				1						1						2
Higgs								1		1	1					1
EWK								1		1	1				1	1
SUSY	1			1							1				1	1
Тор		1		1				1		1						1
Exotica										1				1	1	1
B Physics					1	1			1							1
Heavy Ions														1		0
egamma Jets/MissET				1					1	1	1	1		1	1	1
Muons								1			1			1		2
B-Tagging	1		1							1						1
Tracker				1						1	1					1
Tau / Pflow							1			1	1					1
Trigger DPG								1							1	1
Reserve																2
Unallocated		?											1			1
Current Resources	0	1	1	3			1	5	2	8	5	1	0	1	4	15
Fall Resources (*)	2	1	1	6	1	1	1	5	2	9	7	1	1	4	5	21
POGs/DPGs	1	0	1	3	0	0	1	2	1	4	4	1	0	2	2	10
POG fraction	0.5	0	1	0.5	0	0	1	0.4	0.5	0.44	0.6	1		0.5	0.4	0.48

By Group (1/2)

```
Forward - T2_US_Wisconsin (T2_DE_DESY at start of data taking)

QCD - T2_DE_DESY, T2_FR_CCIN2P3, T2_US_Caltech, (T2_US_MIT)

Higgs - T2_ES_IFCA, T2_FR_GRIF, (T2_IT_Roma), T2_US_MIT

EWK - T2_ES_CIEMAT, T2_FR_CCIN2P3, T2_IT_Legnaro,

T2_UK_London_Brunel, T2_US_UCSD

SUSY - (T2_AT_Vienna), (T2_DE_RWTH), T2_IT_Bari,

T2_UK_London_IC, T2_US_Florida

Top - T2_BE_IIHE, (T2_DE_DESY), T2_ES_IFCA, T2_FR_IPHC,

T2_US_UCSD

Exotica - T2_FR_GRIF, (T2_RU), T2_UK_SGrid_RALPP, T2_US_Purdue
```


By Group (2/2)

```
B-Physics - (T2_CH_CSCS), (T2_CN_Beijing), T2_FI_HIP, T2_US_MIT Heavy Ion-T2_RU
```

E-gamma - T2_FR_GRIF,T2_IT_Roma,T2_UK_London_IC,T2_US_Caltech, (T2_US_UCSD)

Jets/MET HCAL - T2_DE_DESY, T2_FI_HIP,T2_KR_KNU,T2_US_Purdue (T2_RU)

Muon - T2_ES_CIEMAT, (T2_IT_Legnaro) (T2_RU), T2_US_Purdue, (T2_US_Florida)

B-Tagging - (T2_AT_Vienna), T2_BR_UERJ, T2_FR_IPHC, T2_US_Nebraska Tracker - T2_DE_RWTH, (T2_FR_CCIN2P3), T2_IT_PISA, T2_US_Nebraska

Tau/PFlow - T2_EE_Estonia, T2_FR_CCIN2P3, T2_IT_PISA, T2_US_Florida Trigger - T2_ES_CIEMAT, (T2_UK_London), T2_US_Wisconsin

Outlook

The Tier-2 association to analysis group took longer than we hoped

- ► I hope in the next few months we can use the associations with simulation to exercise the system and train people on the task of data management
 - The latency will be lower and the data sets at the Tier-2s will better reflect the needs of the group, if they are controlled by those closest to the work

The transition to /store/user is becoming automated and it should give users a consistent place to store data products

- Large output can be accessed with CRAB
- Small output can be pulled back

The CRAB server should improve functionality and support

We will be working on a smooth transition through the fall.