R&D for new SE’s:
Hadoop

Michael Thomas, Dorian Kcira

California Institute of Technology

CMS Offline & Computing Week
San Diego, April 20-24t 2009

What is Hadoop

Map-Reduce plus the HDFS filesystem
implemented in java

Map-Reduce is a highly parallelized distributed
computing system

HDFS is the distributed cluster filesystem

o This is the feature that we are most interested in
Open source project hosted by Apache

Used by Yahoo for their search engine. Yahoo
is @ major contributor to the Apache Hadoop
project.

HDFS

Distributed Cluster filesystem

Extremely scalable — Yahoo uses it for multi-PB
storage

Easy to manage — few services and little
hardware overhead

Files split into blocks and spread across
multiple cluster datanodes
o 64MB blocks default, configurable

o Block-level decomposition avoids 'hot-file' access
bottlenecks

o Block-level decomposition means the loss of
multiple data nodes will result in the loss of more
files than file-level decomposition

HDFS Services

‘5)'89[1969
« Namenode — manages the filesystem

namespace operations

o File/directory creation/deletion
o Block allocation/removal

o Block locations

 Datanode — stores file blocks on one or more
disk partitions

 Secondary Namenode — helper service for
merging namespace changes

« Services communicate through java RPC, with
some functionality exposed through http
interfaces

Namenode (NN)

 Purpose is similar to dCache PNFS

+ Keeps track of entire fs image
o The entire filesystem directory structure
o The file block = datanode mapping
o Block replication level
o ~1GB per 1e6 blocks recommended

 Entire namespace is stored in memory, but
persisted to disk
o Block locations not persisted to disk
o All namespace requests served from memory
o fsck across entire namespace is really fast

Namenode Journals

NN fs image is read from disk only once at
startup

 Any changes to the namespace (mkdir, rm)
are written to one or more journal files (local
disk, NFS, ...)

« Journal is periodically merged with the fs
image

* Merging can temporarily require extra
memory to store two copies of fs image at
once

Secondary NN

 The name is misleading... this is NOT a backup
namenode or hot spare namenode. It does NOT
respond to namespace requests

* Optional checkpoint server for offloading the NN
journal » fsimage merges

 Download fs image from namenode (once)

* Periodically download journal from namenode
 Merge journal and fs image

 Uploaded merged fs image back to namenode

« Contents of merged fsimage can be manually
copied to NN in case of namenode corruption or
failure

Datanode (DN)

Purpose is similar to dCache pool

Stores file block metadata and file block contents
in one or more local disk partitions. Datanode
scales well with # local partitions

o Caltech is using one per local disk

o Nebraska has 48 individual partitions on Sun

Thumpers

Sends heartbeat to namenode every 3 seconds
Sends full block report to namenode every hour

Namenode uses report + heartbeats to keep track
of which block replicas are still accessible

Client File Access

 When a client requests a file, it first
contacts the namenode for namespace
information.

 The namenode looks up the block locations
for the requested files, and returns the
datanodes that contain the requested
blocks

* The client contacts the datanodes directly
to retrieve the file contents from the blocks
on the datanodes

Native Client

* A native java client can be used to
perform all file and management
operations

* All operations use native Hadoop java
APIls

10

* Client that presents a posix-like interface to

arbitrary backend storage systems (ntfs, lustre,
ssh)

 HDFS fuse module provides posix interface to
HDFS using the HDFS APIs. Allows standard
filesystem commands on HDFS (rm, cp, mkdir,...)

« HDFS does not support non-sequential (random)
writes
o root TFile can't write directly to HDFS fuse, but not
really necessary for CMS

o but files can be read through fuse with CMSSW / TFile -
eventually CMSSW can use the Hadoop API

« Random reads are ok

11

Gridftp/SRM Clients

« Gridftp could write to HDFS+FUSE with a single
stream

* Multiple streams will fail due to non-sequential
writes

* Brian at Nebraska developed a GridFTP dsi
module to buffer multiple streams so that data
can be written to HDFS sequentially

« Bestman SRM can perform namespace operations
by using FUSE

o srmrm, srmls, srmmkdir

12

Caltech Setup

* Current Tier2 cluster runs RHEL4 with dCache.
We did not want to disturb this working setup

* Recently acquired 64 additional nodes,
installed with Rocks5/RHELS. This is set up as
a separate cluster with its own CE and SE.
Avoids interfering with working RHEL4 cluster

« Single PhEDEX instance runs on the RHEL4
cluster, but each SE has its own SRM server

* Clusters share the same private subnet

13

Caltech Setup

« Namenode runs on same system as Condor negotiator/
collector
o 8 cores, 16GB RAM

o System is very over-provisioned. Load never exceeds 1.0, JVM
never exceeds 200MB

o Plenty of room for scaling to more blocks

« Secondary NN runs on same system as condor batch
worker

64 data nodes, 170TB available space
o Includes 2 Sun Thumpers running Solaris
o Currently only 4.5TB used
o All datanodes are also condor batch workers

« Single Bestman SRM server using FUSE for file ops
« Two gridftp-hdfs servers

14

Deployment History

T2_US_Nebraska first started investigating
Hadoop last year. They performed a lot of R&D
to get Hadoop to work in the CMS context

 Two SEs in SAM
* Gridftp-hdfs DSI module
« Use of Bestman SRM

 Many internal Hadoop bug fixes and
improvements

* Presented this work to the USCMS T2
community in March

15

 Held at UCSD in early March 2009

* Intended to help get interested USCMS Tier2 sites
jump-start their hadoop installations

* Results:
o Caltech, UCSD expanded their hadoop installations
o Wisconsin delayed deployment due to facility problems
o Bestman, GridFTP servers deployed
o Initial SRM stress tests performed
o UCSD <> Caltech load tests started
o Hadoop SEs added to SAM
o Improved RPM packaging

o Better online documentation for CMS
https:/itwiki.grid.iu.edu/bin/view/Storage/HdfsWorkshop

16

Caltech Deployment

Started using Hadoop in Feb. 2009 on a 4-node
testbed

Created RPMs to greatly simplify the deployment
across an entire cluster

Deployed Hadoop on new RHELDS cluster of 64
nodes

Basic functionality worked out of the box, but
performance was poor.

Attended a USCMS Tier2 hadoop workshop at
UCSD in early March

17

Caltech Deployment

Migrated OSG RSV tests to Hadoop in mid-
march

Migrated T1 - Caltech load tests to Hadoop in
early April
Attempted to move one /store/user/$USER

directory to hadoop in early April, but failed
due to TFC problems

18

Current Successes

SAM tests passing

T1 - Caltech load tests passing

RPMs provide easy installs, reinstalls
Bestman + GridFTP-HDFS have been stable
Great inter-node transfer rates (2GB/s
aggregate)

Adequate WAN transfer rates (200MB/s)

19

OSG RSV tests required patch to remove “:” from
filenames. This is not a valid character in hadoop
filenames. (resolved)

Bestman dropped VOMS FQAN for non-delegated
proxies, caused improper user mappings and
filesystem permission failures for SAM, PhEDEXx
(resolved)

TFC not so “t” anymore’

Datanode/Namenode version mismatches
(improved)

Initial performance was poor (400MB/s aggregate)
due to cluster switch configuration (resolved)

*) TFC = Trivial File Catalog 20

Not without more problems...

~ }

FUSE was not so stable

o Boundary condition error for files with a specific
size crashed fuse (resolved)

o df sometimes not showing fuse mount space
(resolved)

o Lazy java garbage collection resulted in hitting
ulimit for open files (resolved with larger ulimit)

Running two CEs and SEs requires extra care
so that both CEs can access both SEs

o Some private network configuration issues
o Lots of TFC wrangling

21

Many Read Processes

Looping reads on 62 machines, one read per machine

T2_US_Caltech Network last hour
1.96%

1.8 G

Looping reads on 62 nodes

Bytes/sec

-0.0.0
11:20 11:25 11:30 ANEES 11:40 11:45 11:50 11:55 12: 00 12: 05 12:10 12:15 22

HIn @ Out

Many Parallel Writes with FUSE

Write 4GB file on 62 machines (dd+fuse) with 2x replication
('!5§‘GBIS) T2_us_caltech Network last hour

Write 4GB x 62 nodes

Bytes/sec

12:40 12:45

Replicate by Decommision

.. (i
Dg'commission 10 machines at once, resulting in the
namenode issuing many replication tasks (1.7GB/s)

T2_US_Caltech Network last hour

1:881

Decommission nodes

Bytes/sec

12:30 12:35 12:40 12:45 12:50

11:55 12:10 12:15 12:20

UCSD ->Caltech Load Tests
2 X 10GbE GridFTP servers, 260MB/s

T2_US_Caltech Network last hour

go00 M 4

7oO0 M

Net in = —260MB/s

600 M

500 M

400 M

Bytes/sec

300 M

200 M

100 M

15:45 15:55 16: 00 16: 05 16:10 16:15 16: 20 16: 25 16:30

EHIn @ Out

15:50

16: 35 16:40

Next Steps

Make another attempt to move /store/user to
HDFS

More benchmarks to show that HDFS satisfies
the CMS SE technology requirements

Finish validation that both CEs can access data
from both SEs

More WAN transfer tests and tuning
o FDT + HDFS integration starting soon

Migrate additional data to Hadoop

o All of /store/user
o Istore/lunmerged
o Non-CMS storage areas

26

Overall Impressions

Management of HDFS is simple relative to other
SE options

Performance has been more than adequate

Scaled from 4 nodes to 64 nodes with no
problems

~50% of our initial problems were related to
Hadoop, the other 50% were Bestman, TFC,
PhEDEX agent, or caused by running multiple
SEs

We currently plan to continue using Hadoop and
expand it moving forward

27

