
Michael Thomas, Dorian Kcira
California Institute of Technology

CMS Offline & Computing Week

San Diego, April 20-24th 2009

2

•  Map-Reduce plus the HDFS filesystem
implemented in java

•  Map-Reduce is a highly parallelized distributed
computing system

•  HDFS is the distributed cluster filesystem
o  This is the feature that we are most interested in

•  Open source project hosted by Apache
•  Used by Yahoo for their search engine. Yahoo

is a major contributor to the Apache Hadoop
project.

3

•  Distributed Cluster filesystem
•  Extremely scalable – Yahoo uses it for multi-PB

storage
•  Easy to manage – few services and little

hardware overhead
•  Files split into blocks and spread across

multiple cluster datanodes
o  64MB blocks default, configurable
o Block-level decomposition avoids 'hot-file' access

bottlenecks
o Block-level decomposition means the loss of

multiple data nodes will result in the loss of more
files than file-level decomposition

4

•  Namenode – manages the filesystem
namespace operations
o  File/directory creation/deletion
o Block allocation/removal
o Block locations

•  Datanode – stores file blocks on one or more
disk partitions

•  Secondary Namenode – helper service for
merging namespace changes

•  Services communicate through java RPC, with
some functionality exposed through http
interfaces

5

•  Purpose is similar to dCache PNFS
•  Keeps track of entire fs image

o  The entire filesystem directory structure
o  The file block datanode mapping
o Block replication level
o  ~1GB per 1e6 blocks recommended

•  Entire namespace is stored in memory, but
persisted to disk
o Block locations not persisted to disk
o All namespace requests served from memory
o  fsck across entire namespace is really fast

6

•  NN fs image is read from disk only once at
startup

•  Any changes to the namespace (mkdir, rm)
are written to one or more journal files (local
disk, NFS, ...)

•  Journal is periodically merged with the fs
image

•  Merging can temporarily require extra
memory to store two copies of fs image at
once

7

•  The name is misleading... this is NOT a backup
namenode or hot spare namenode. It does NOT
respond to namespace requests

•  Optional checkpoint server for offloading the NN
journal fsimage merges

•  Download fs image from namenode (once)
•  Periodically download journal from namenode
•  Merge journal and fs image
•  Uploaded merged fs image back to namenode
•  Contents of merged fsimage can be manually

copied to NN in case of namenode corruption or
failure

8

•  Purpose is similar to dCache pool
•  Stores file block metadata and file block contents

in one or more local disk partitions. Datanode
scales well with # local partitions
o Caltech is using one per local disk
o Nebraska has 48 individual partitions on Sun

Thumpers
•  Sends heartbeat to namenode every 3 seconds
•  Sends full block report to namenode every hour
•  Namenode uses report + heartbeats to keep track

of which block replicas are still accessible

9

•  When a client requests a file, it first
contacts the namenode for namespace
information.

•  The namenode looks up the block locations
for the requested files, and returns the
datanodes that contain the requested
blocks

•  The client contacts the datanodes directly
to retrieve the file contents from the blocks
on the datanodes

10

•  A native java client can be used to
perform all file and management
operations

•  All operations use native Hadoop java
APIs

11

•  Client that presents a posix-like interface to
arbitrary backend storage systems (ntfs, lustre,
ssh)

•  HDFS fuse module provides posix interface to
HDFS using the HDFS APIs. Allows standard
filesystem commands on HDFS (rm, cp, mkdir,...)

•  HDFS does not support non-sequential (random)
writes
o  root TFile can't write directly to HDFS fuse, but not

really necessary for CMS
o  but files can be read through fuse with CMSSW / TFile -

eventually CMSSW can use the Hadoop API
•  Random reads are ok

12

•  Gridftp could write to HDFS+FUSE with a single
stream

•  Multiple streams will fail due to non-sequential
writes

•  Brian at Nebraska developed a GridFTP dsi
module to buffer multiple streams so that data
can be written to HDFS sequentially

•  Bestman SRM can perform namespace operations
by using FUSE
o  srmrm, srmls, srmmkdir

13

•  Current Tier2 cluster runs RHEL4 with dCache.
We did not want to disturb this working setup

•  Recently acquired 64 additional nodes,
installed with Rocks5/RHEL5. This is set up as
a separate cluster with its own CE and SE.
Avoids interfering with working RHEL4 cluster

•  Single PhEDEx instance runs on the RHEL4
cluster, but each SE has its own SRM server

•  Clusters share the same private subnet

14

•  Namenode runs on same system as Condor negotiator/
collector
o  8 cores, 16GB RAM
o  System is very over-provisioned. Load never exceeds 1.0, JVM

never exceeds 200MB
o  Plenty of room for scaling to more blocks

•  Secondary NN runs on same system as condor batch
worker

•  64 data nodes, 170TB available space
o  Includes 2 Sun Thumpers running Solaris
o  Currently only 4.5TB used
o  All datanodes are also condor batch workers

•  Single Bestman SRM server using FUSE for file ops
•  Two gridftp-hdfs servers

15

T2_US_Nebraska first started investigating
Hadoop last year. They performed a lot of R&D
to get Hadoop to work in the CMS context

•  Two SEs in SAM
•  Gridftp-hdfs DSI module
•  Use of Bestman SRM
•  Many internal Hadoop bug fixes and

improvements
•  Presented this work to the USCMS T2

community in March

16

•  Held at UCSD in early March 2009
•  Intended to help get interested USCMS Tier2 sites

jump-start their hadoop installations
•  Results:

o Caltech, UCSD expanded their hadoop installations
o Wisconsin delayed deployment due to facility problems
o Bestman, GridFTP servers deployed
o  Initial SRM stress tests performed
o UCSD Caltech load tests started
o Hadoop SEs added to SAM
o  Improved RPM packaging
o  Better online documentation for CMS

•  https://twiki.grid.iu.edu/bin/view/Storage/HdfsWorkshop

17

•  Started using Hadoop in Feb. 2009 on a 4-node
testbed

•  Created RPMs to greatly simplify the deployment
across an entire cluster

•  Deployed Hadoop on new RHEL5 cluster of 64
nodes

•  Basic functionality worked out of the box, but
performance was poor.

•  Attended a USCMS Tier2 hadoop workshop at
UCSD in early March

18

•  Migrated OSG RSV tests to Hadoop in mid-
march

•  Migrated T1 Caltech load tests to Hadoop in
early April

•  Attempted to move one /store/user/$USER
directory to hadoop in early April, but failed
due to TFC problems

19

•  SAM tests passing
•  T1 Caltech load tests passing
•  RPMs provide easy installs, reinstalls
•  Bestman + GridFTP-HDFS have been stable
•  Great inter-node transfer rates (2GB/s

aggregate)
•  Adequate WAN transfer rates (200MB/s)

20

•  OSG RSV tests required patch to remove “:” from
filenames. This is not a valid character in hadoop
filenames. (resolved)

•  Bestman dropped VOMS FQAN for non-delegated
proxies, caused improper user mappings and
filesystem permission failures for SAM, PhEDEx
(resolved)

•  TFC not so “t” anymore*

•  Datanode/Namenode version mismatches
(improved)

•  Initial performance was poor (400MB/s aggregate)
due to cluster switch configuration (resolved)

*) TFC = Trivial File Catalog 

21

•  FUSE was not so stable
o Boundary condition error for files with a specific

size crashed fuse (resolved)
o  df sometimes not showing fuse mount space

(resolved)
o  Lazy java garbage collection resulted in hitting

ulimit for open files (resolved with larger ulimit)
•  Running two CEs and SEs requires extra care

so that both CEs can access both SEs
o Some private network configuration issues
o  Lots of TFC wrangling

22

Looping reads on 62 machines, one read per machine

23

Write 4GB file on 62 machines (dd+fuse) with 2x replication
(1.8GB/s)

24

Decommission 10 machines at once, resulting in the
namenode issuing many replication tasks (1.7GB/s)

25

2 x 10GbE GridFTP servers, 260MB/s

26

•  Make another attempt to move /store/user to
HDFS

•  More benchmarks to show that HDFS satisfies
the CMS SE technology requirements

•  Finish validation that both CEs can access data
from both SEs

•  More WAN transfer tests and tuning
o  FDT + HDFS integration starting soon

•  Migrate additional data to Hadoop
o All of /store/user
o  /store/unmerged
o Non-CMS storage areas

27

•  Management of HDFS is simple relative to other
SE options

•  Performance has been more than adequate
•  Scaled from 4 nodes to 64 nodes with no

problems
•  ~50% of our initial problems were related to

Hadoop, the other 50% were Bestman, TFC,
PhEDEx agent, or caused by running multiple
SEs

•  We currently plan to continue using Hadoop and
expand it moving forward

