

CHIPP – CSCS F2F Meeting

Zürich, August 19th 2014

Sadaf Alam George Brown Miguel Gila Gianni Ricciardi

Agenda

- 9:45 Coffee, presentation and agenda
- 10:15 Tier-2 status and plans
 - CSCS (40')
 - UNIBE-LHEP (20')
- 11:15 Tier-3 status and plans:
 - PSI (10')
 - UNIBE-ID (10')
 - UNIGE (10')
- 12:00 Lunch break
- 13:15 ATLAS on Todi/Piz Daint (Michi 10 min)
- 13:25 Open discussion
- 13:45 Next meeting date and place
- 14:00 A.O.B.
- 15:00 Coffee Break
- 15:30 NGI CH
 - Swiss Argus national service
 - Swiss Nagios national service
 - EGI request: SAM Nagios Probes refactoring TF
 - Update on the Swiss EGI participation (Sigve 10 min)
 - A.O.B.
- 16:30 End of the meeting

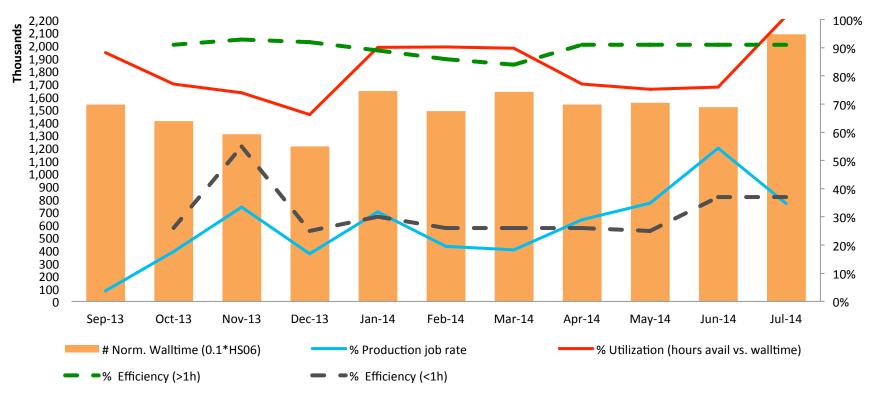
Tier 2 status and plans CSCS


Status

Statistics - Availability & Reliability

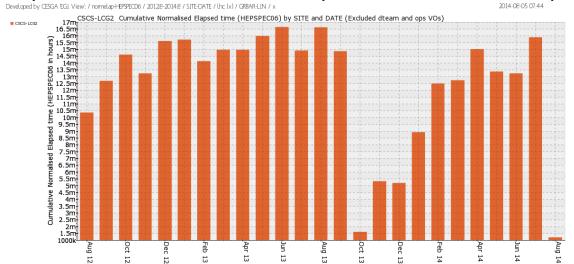
- Relatively stable operation with small hiccups:
 - GPFS: inode usage above threshold and IB cable broken
 - Middleware issues (workaround in place)

dCache infosys errors +


GPFS problems (inodes)

Statistics - CPU Usage

CPU usage increased (specially during July)


Phoenix usage since Sep-13

Statistics - CPU Usage from EGI perspective

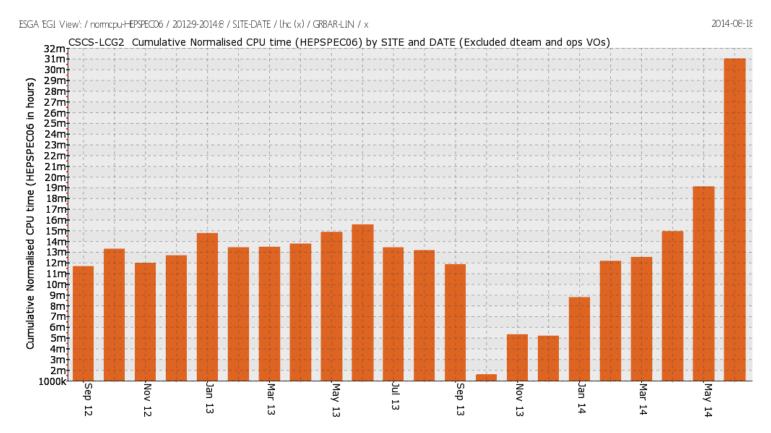
Computation hours restored to previous values over past months:

Normalized Elapsed CPU (HS06-hours)

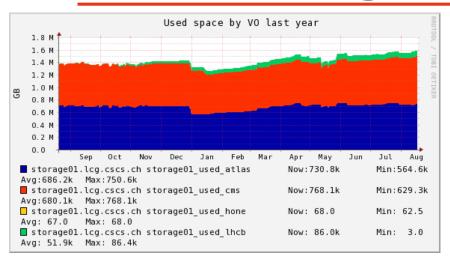
Includes also failed and cancelled jobs.

• There is still a mismatch between local accounting and EGI reports:

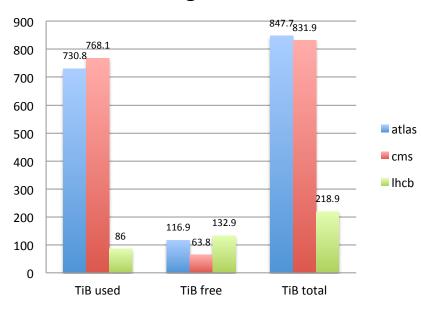
	Jan 2014	Feb 2014	Mar 2014	Jun 2014	May 2014	June 2014	July 2014
SLURM	16.529.550	14.945.640	16.461.540	15.453.370	15.594.660	15.240.410	20.964.960
EGI	8.918.772	12.487.696	12.726.256	15.008.996	13.367.080	13.232.896	15.880.340

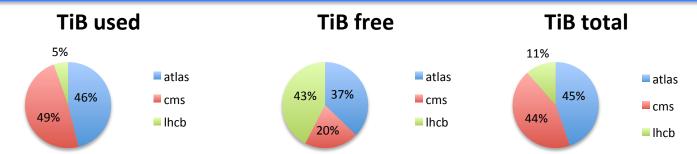

Unclear as to what it includes.

TaskForce in place to identify possible improvements.


Statistics - CPU Usage from EGI perspective (extra)

Total computation hours (HS06) (SUM)




Statistics - Storage usage

	TiB used	TiB free	TiB	total
atlas	730.	8 1	16.9	847.7
cms	768.	1	63.8	831.9
lhcb	8	6 1	32.9	218.9
	1584.	9 3	13.6	1898.5

Storage distribution CSCS-LCG2 Aug 18 2014

© CSCS 2014 - HPC operations

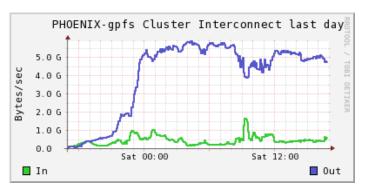
9

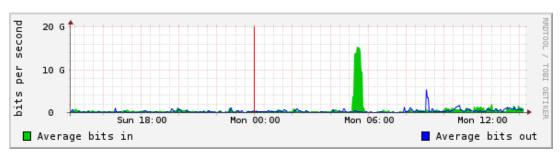
Statistics – Swiss resources

Compute (8x nodes, ~3.5k HS06)

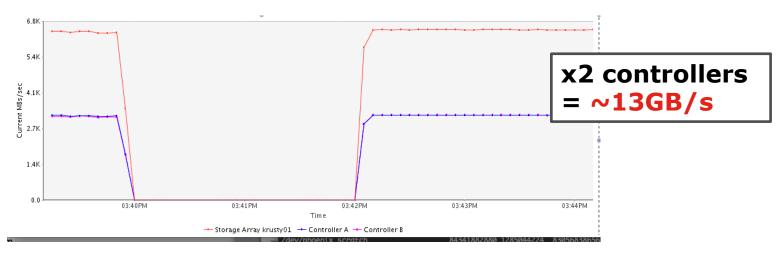
- Deployed and fully operational.
- Pending to increase priority of Swiss users.

Storage (~375TB)


- Not in production.
- HW issues have been preventing this hardware to be deployed.
- Latest testing promising.
- We won't put hardware in production until we are 100% sure it won't be problematic.



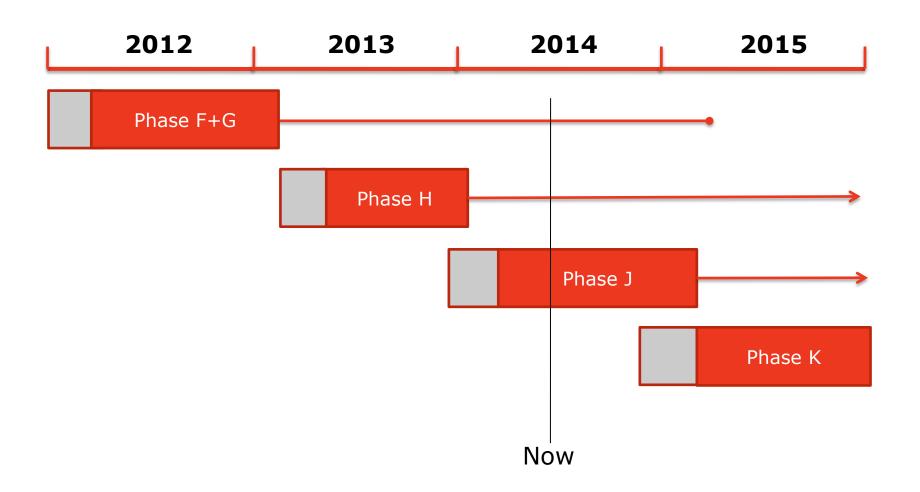
- Deployed Virtualization servers, evaluating oVirt and/or RHEV
- Reserved 4 full nodes for ATLAS, 4 for CMS and 2 for LHCb
 - A manual fix to fairshare and backfilling issues.
- Not deployed ~375TB of Storage for Swiss users due to HW issues
- Deployed GPFS2 on testing environment, planning to do gradually with at least 30% WNs before the final switch over.
- Discovered faulty IB cable that made GPFS unstable
 - seen tremendous performance and stability improvement since the replacement


Next maintenance on Sept 3 or 17. Significant changes:

- Swiss users mapping and priority
 - need to define specific mappings for CMSch and change account priorities. → reconfigure all grid services! (YAIM)
- Swiss ARGUS National service to be tested internally
 - Need to replace current setup (on CREAMs) for a set of 3 dedicated
 VMs on a HA configuration, similar to Site-BDII.
- GPFS2 deployment in production
 - This is the most critical change, as it requires changing the configuration on all nodes.
- CSCS general uplink 100Gbps, Phoenix uplink still 20Gbps (2x 10Gbps)
 - Upgrade to 40Gbps possible. Next year?

GPFS2 (https://wiki.chipp.ch/twiki/bin/view/LCGTier2/ServiceGPFS2)

- First production service fully configured using Puppet
- Observed performance results above initial expectations:


- If more storage or performance is required, we can increase it just by adding hardware.
 - Possible to increase of ~40% in bandwidth
 - Double capacity, from 79T to 150T

Plans

Phases of Phoenix

Great increase in compute power. Sandy Bridge systems to be run until the end of their life

Pledges

Phase	Compute power actual/pledged [HS06]	Storage actual/pledged [TB]	Scratch actual/desired [GB/s]
Phase H - 2013	28826/26000	1919/1800	9/9
Phase J - 2014	39000/ <i>35000</i>	2100/2000	9/9
Phase K - 2015	44000/ <i>39000</i>	2600/2200	9/13

Compute	Storage
---------	---------

	Phase H	Phase J	Phase K		Phase H	Phase J	Phase K
	HS	HS	HS		TiB	TiB	TiB
ATLAS	10'400	14'000	15'600	ATLAS	792	875	955
CMS	10'400	14'000	15'600	CMS	792	875	955
LHCb	5'200	7'000	7'800	LHCb	216	250	290

Compute/Storage

	Phase H	Phase J	Phase K
	HS/TB	HS/TB	HS/TB
ATLAS	13.13	16.00	16.34
CMS	13.13	16.00	16.34
LHCb	24.07	28.00	26.90

Decommissions & purchases

Purchases

- Storage for a total of 720TiB
 - intended to replace 3x half-racks of IBM DC3500

- 20x compute nodes (~8.5kHS06)
 - Not decided if Ivy Bridge or Haswell, initial tests on the latter not very promising

- 2x service nodes
- 2x Mellanox FDR IB switches

Decommissions:

- 3x half-racks of IBM DC3500 storage, 60 disks each
- Old GPFS (2 full racks of JBODs)
- Old CFengine servers?

09:39:44 up 832 days, 22:25, 1 user, load average: 0.00, 0.00, 0.00

Thank you for your attention

Extra slides

NetApp problems (Swiss users storage)

- Initial tests ran on the storage were successful.
- When the system was put in production **under heavy I/O, paths would drop** randomly without any particular reason.
- Spent 3 full weeks working with NetApp support, changing both server and storage controller configuration and HW.
- The result was unsuccessful, until controller firmware was replaced. So far, it's working OK under heavy load, but need to test for a longer period with different IO patterns to make sure the problem is fixed and not masked.
- Lessons learned:
 - NetApp support is US-based, need to review support policies with them, as this makes solving issues difficult.
 - When a service is provided using HW from different vendors, they can start the **blame war** and CSCS/CHIPP are left in the middle. → **this** needs to change
 - We (CSCS) need to improve our acceptance criteria before deploying new production services.

GPFS issues

Metadata inode exhaustion

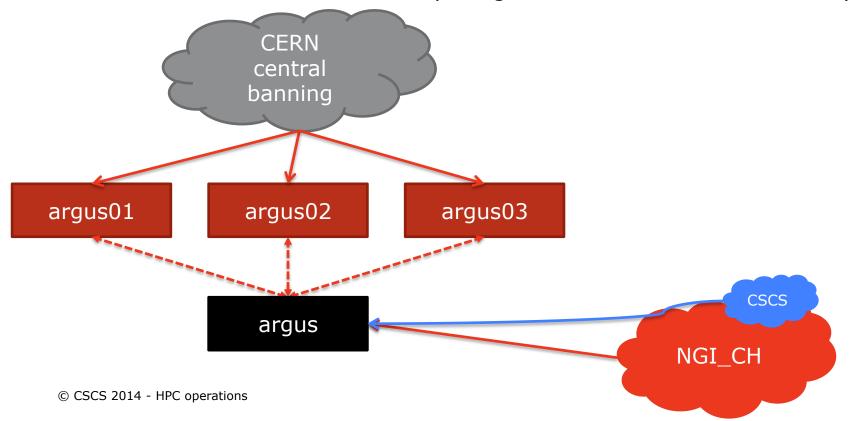
- Due to several identified problems, inodes were exhausted on metadata servers.
- This caused the whole cluster to limp while the policies were enforced (= massive removal of \sim 130million files).
- ➤ Policies moved to several **independent** nodes running at different times.
- ➤ Better monitoring (Ganglia) deployed.

Broken Infiniband cable

- WNs were dropping off GPFS when under heavy IO.
- Compiled and run netperf between all GPFS servers.
- One GPFS server was providing 10x times less bandwidth than expected!
- WNs dropping off because the GPFS server would think it could not reach clients.
- ➤ Working on running *netperf* automatically via Nagios

dCache issues

- Information system not properly handling this
- dCache did provided an official fix for this on release 2.6.31.
 - We run 2.6.27
 - Applying this required downtime AND fix was only available after we deployed our 'hack'.
- Deployed the following workaround until dCache gets upgraded.


```
# MG 16/06/14 -- hack to solve
# https://xgus.ggus.eu/ngi_ch/?mode=ticket_info&ticket_id=327
# until dCache support fixes it

/usr/sbin/dcache-info-provider |sed /'dn:
GlueSEAccessProtocolLocalID=NFSv41-storage02@nfs-storage02Domain/,/^$/{d}'
```


Swiss National Argus service

- 3 KVM VMs on 3 different KVM hosts.
- Load-balanced with a common DNS alias: argus.lcg.cscs.ch
 - Similar to current CSCS site-bdii configuration
 - Need to test this before opening the service to Swiss community

