

Commissioning CERN Tier-0 reconstruction workloads on Piz Daint at CSCS

HEPiX Autumn/Fall 2018 – Barcelona

Gianfranco Sciacca, University of Bern (Speaker) Pablo Fernandez, Miguel Gila, CSCS

10 October, 2018

Table of Contents

- 1. Motivation and background
- 2. Challenges
- 3. Tier-2 facility integration
- 4. Tier-0 spillover integration
- 5. Results (ATLAS, CMS)
- 6. Lessons learned

Motivation

- CSCS HPC resources are integrated with WLCG as part of the CSCS-LCG2 site
- CERN and CSCS have planned R&D projects for a deeper integration of the CSCS Computing resources with the LHC computing environment (in view of the challenges posed by the foreseen scale of the HL-LCH computing needs)
- "Development and testing of an infrastructure for accessing compute and storage resources in an HPC Centre"
- First use case proposed by ATLAS and CMS to CSCS:
 - Implementation of an environment supporting Tier-0 spill-over to Piz Daint
 - Goals
 - Elastic provisioning of Tier-0 prompt reconstruction of the experiment RAW data
 - Support steady and on-demand spill-over / support computational peaks
 - Evaluate solutions and interaction in preparation for Run 3 (in 2021+)

Background

The Swiss HEP computing community and CSCS have started working on the HPC integration with the LHC experiment Tier-2 facilities in 2014

ATLAS Geant4 simulation

- Ran in production for 6 months on a Cray XK7
- Integrated by means of a modified ARC CE, submitting remotely from Bern to CSCS

LHConCray project (ATLAS, CMS, LHCb)

- Ran for about 2 years in 2016-17
- Aimed at integrating Piz Daint with the LHC experiment frameworks
- Targeted all experiment workflows (including user analysis)
- Went in production with 1.6k cores in 2017

WLCG Tier-2 facilities migrated to Piz Daint

- Decision taken at the end of 2017
- >4k cores by April 2018,>10k by April 2019

Challenges

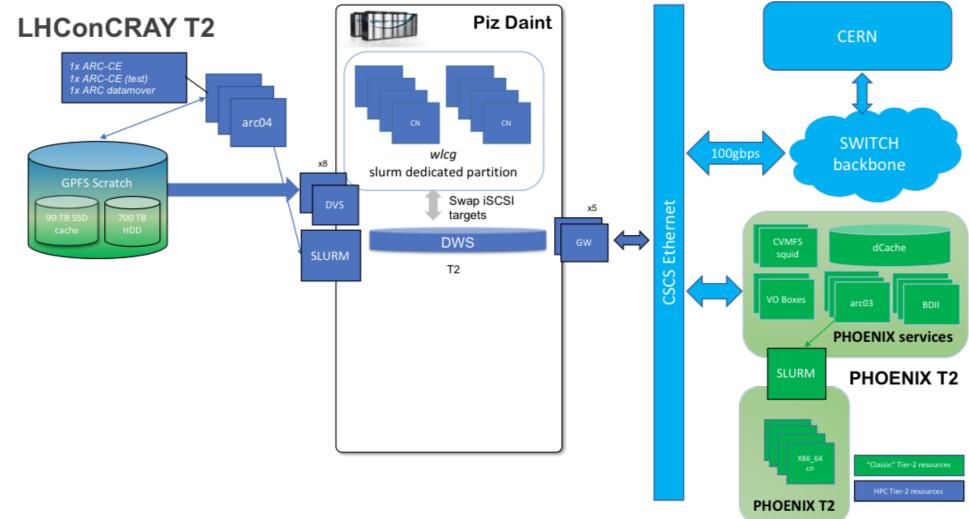
HPC is awesome

- Powerful machines featuring top of the range technologies
- Piz Daint at CSCS: <u>https://www.cscs.ch/computers/piz-daint/</u> (see M. Passerini <u>talk</u>)
- Benefits from economy of scales both in procurement and operational costs

Challenges

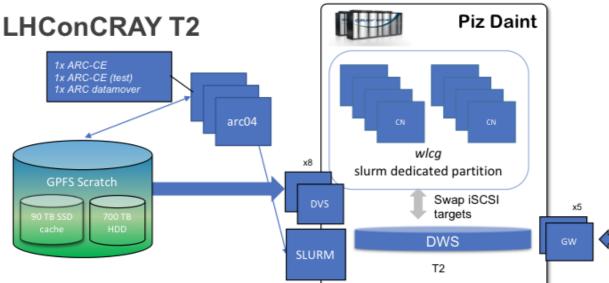
HPC is awesome

- Powerful machines featuring top of the range technologies
- Piz Daint at CSCS: <u>https://www.cscs.ch/computers/piz-daint/</u> (see M. Passerini <u>talk</u>)
- Benefits from economy of scales both in procurement and operational costs

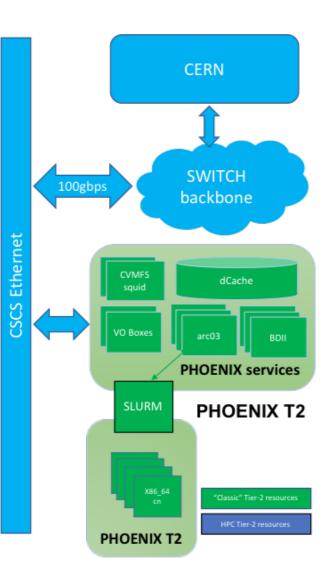

HPC is awkward => for HEP

- Technologies and OS are optimized to accelerate parallel software
- Many expected linux tools missing
- Diskless nodes with 1 GB/core, some with 2 GB/core, no swap
- Network usage and I/O patterns not typical compared to standard HPC workflows
- Container technology has gone a long way to make them look more like traditional linux systems
 - But could not solve all challenges related to the integration with the complex LHC experiment frameworks

Tier-2 facility integration



In production in WLCG since 1.5 years



Tier-2 facility integration

- Jobs run in Docker containers using Shifter, or singularity (CMS)
- Images (full WNs) on the Cray Sonexion 1600/3000 Lustre FS
- 68 cores, 2GB/core, memory is not consumable in SLURM. Enforce 6GB/core limit
- CVMFS tiered cache (6GB in RAM, pre-loaded on GPFS)
- DVS (Cray Data Virtualisation Service) exposing a <u>dedicated</u> GPFS via 40GbE links
- DWS for swap and /tmp (WiP)
- In production in WLCG since 1.5 years

From Tier-2 to Tier-0 integration

Tier-0 spillover integration

Extension of proven production Tier-2 design

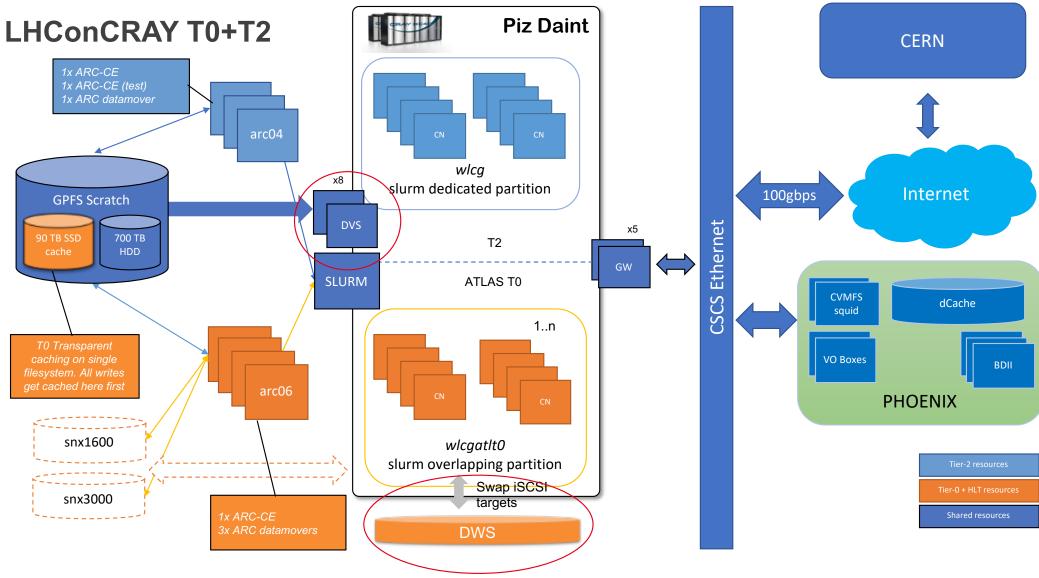
- Dedicated ARC servers and data-stagers
- GPFS as shared file system and ARC cache, with a dedicated SSD cache layer in front of it

No reserved resources, no node draining

- ARC submits to a dedicated SLURM partition with up to 150 nodes (~10k cores) that overlaps with standard HPC jobs
- Jobs from ARC get higher priority, taking over nodes as they become free (no idle resources)
- Nodes re-configured on the fly, CVMFS mounted on demand, when needed
- Can run multi-core or single-core jobs (up to 128GB RAM/64 cores per node). Swap available.
- Allows for both Tier-0 burst and steady spillover to be processed without operational differences (in principle)

WLCG environment isolation

Tier-2 jobs continue running (on dedicated nodes) along Tier-0 jobs


Excellent connectivity

• 4x40gbps between Daint and dCache, 100 gbps link to Internet/CERN border

Tier-0 spillover integration

ETH zürich

Results

ATLAS workloads validation

- Dedicated PanDA queue, dedicated storage token on dCache
- Input RAW data copied asynchronously to the CSCS dCache, staged in via ARC
- Basics validation with HammerCloud tests (lightweight MC simulation jobs)
- **RAW data reconstruction on physics_BphysLS stream** O(10%) of physics_Main
 - Run continuously on O(20) nodes (~1300 cores) 0.7 TB input (710k events)
 - <u>Considerable tuning needed</u>: OOM (solved by adding swap), job corecount, cgroups and slurm config, CVMFS in-RAM, I/O (doubled the nr of DVS nodes), nr. of input events per job, PanDA brokerage, etc.

	Turnaround time	CPU/WC efficiency	CPU time/event	Wall time/event
Piz Daint	13h	32% (32-core)	20.8	78.4
Grid	18h (90%), 46h (100%)	53% (various)	13.6	33.5

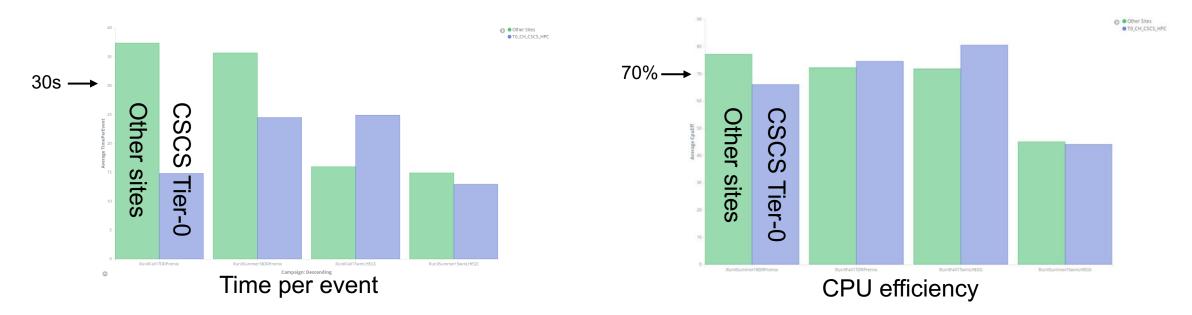
ATLAS workloads validation

RAW data reconstruction on physics_Main (input 35 TB, 32M events)

- On demand runs on O(150) nodes (~10000 cores)
- Memory needs slightly higher, swap needed, but failed to instantiate (Cray DWS bug)
- Tried tuning corecount, could not pack the nodes
- 3x16-core jobs performed better, but too many job transient files => DVS could not cope (another Cray bug)
- Settled on 2x16-core jobs per node, run steadily, but <u>large waste of resources</u>

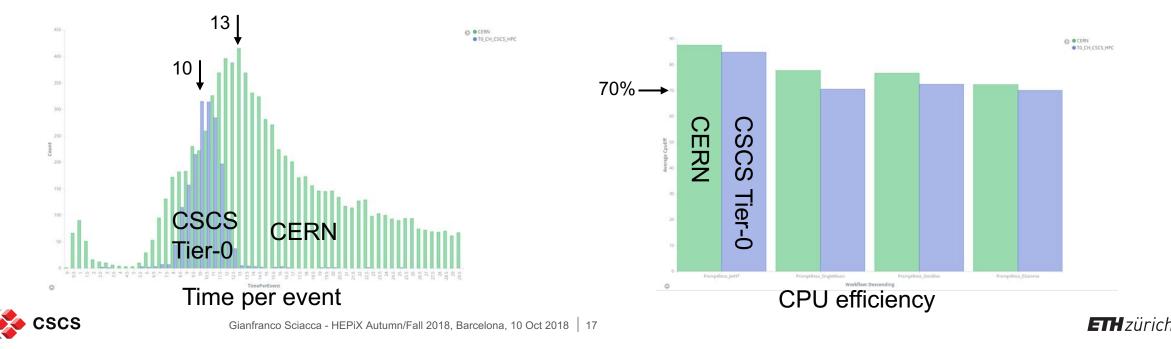
	Jobs per node	CPU/WC efficiency	Turnaround time	CPU time/event	Wall time/event
Piz Daint	2x32 core	27%			
Piz Daint	1x56 core	23% (effective 11%)			
Piz Daint	3x16 core	42% (effective 32%)			
Piz Daint	2x16 core	62% (effective 31%)	7d 7h	22.4	55.0
Grid	various	62%	5d 9h	18.2	31.6

ATLAS conclusions


- We have (~)succeeded in validating Piz Daint for ATLAS Tier-0 spill-over
 - Validated for *Physics_BphysLS* stream
 - Higher WC/event due to high corecount used (serial portions of the workload)
 - Understood the current limitation for *Physics_Main* (Cray bugs)
 - Still not too far from the target
 - This has been a <u>very</u> laborious exercise that has involved several experts on both sides
 - Not surprisingly: we aimed at fitting a workload to a system that does not entirely fulfil the hardware requirements, so a lot of tuning needed be put in place
- We consider validating Piz Daint for Tier-0 workloads an outstanding achievement

CMS health check

- Hammercloud commissioning first check things are right
 - Initial issues with CVMFS stability and low efficiency, solved with cgroups configuration
- Production workflows check the "site" can do regular Tier-2 prod
 - Few hundred cores, very low error rates, good time/event, good efficiency



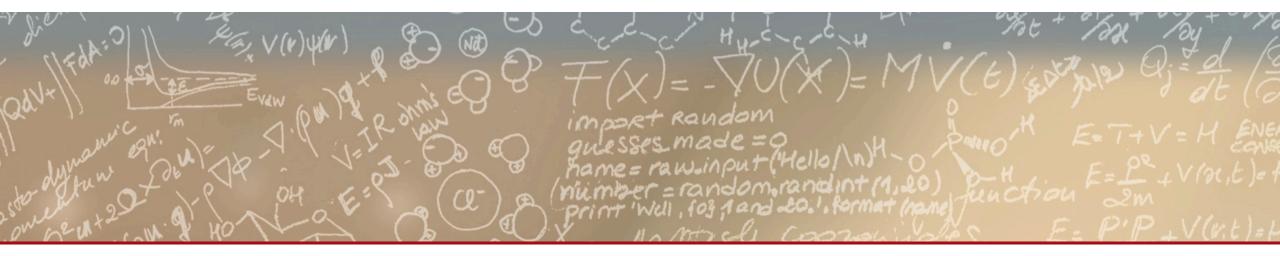
CMS Tier-0 replay test

- ~2000 cores allocated at CSCS
 - Reconstruction jobs: processing 20% of a typical run with 8-thread jobs
- All data hosted at EOS @ CERN (local CSCS grid SE not used)
 - 13 TB input data read, 17 TB output data produced
 - Input read directly from CERN through the network
 - Output written to local scratch, then shipped to EOS at the end of the job

CMS conclusions

- Data to be taken with care, since the jobs running on both sites were not the same (still Tier-0 Reco)
- CPU efficiency is very much comparable for both sites
 - Slightly lower for CSCS, which can be explained by remote data read/write
- Time per event is difficult to compare
 - Still no evidence of significant performance difference
- We are probably ready to go into production.
 - We would need a longer sustained test, but we have no real evidence of huge problems

Lessons Learned


- We have shown that LHC experiments can use a general purpose HPC system transparently for all their workflows
 - Integration efforts were costly, first time Tier-0 workloads go to a HPC system
 - Plenty of complexities, but no major technical showstopper
- This required the centre to relax some policies
 - But nothing major against design decisions or PRACE level policies
- We hope some HEP requirements will drive the design of the next generation machine(s)

Thank you for your attention.