

The LHC and Swiss Participation

Large participation by Swiss institutes in machine and 3 of the LHC experiments ATLAS, CMS and LHCb

The LHC and Swiss Participation – support at federal and cantonal level

Why Manno?

Vast CPU and disk requirements for LHC experimental analysis beyond the scope of individual institutes – requires international collaboration on extended timescale

Particle physics implementation of GRID (LCG)

- Decision by CHIPP LHC institutes to
 - work together on computing issues
 - Agreement with CSCS to provide infrastructure in "T2+T3" framework

Switzerland as co-host to the CERN LHC

• CERN is now the leading world accelerator laboratory

- •LHC experiments will dominate particle physics research in next decade
- LHC experiments expect to collect first data (10 TeV) in Summer 2008
- Tremendous opportunity for Swiss research groups (~350 physicists and doctoral students associated to CHIPP in Switzerland)

• The benefits for Switzerland are scientific, cultural and economic

- Investment in contracts and services in Switzerland
- Technology transfer to industry and training
- Association with new technologies (e.g. GRID)

•LHC machine and LHC experiments are strongly supported

- Federal, cantonal and institute level
- Financial, advisory and "in-kind" support
- This has enabled substantial contributions to both LHC and Swiss LHC groups Hopefully an effect on quality of research

•Support includes that of CSCS

- A. Note some contributions to the LHC machine in addition to CH budget contribution to CERN
- B. CH contribution to and status of the experiments
- C. Analysis and computing in CH for LHC

Switzerland as co-host to the CERN LHC

A. Clark

The LHC experiments – contribution of Swiss Groups

Experiment	Institute	# physicists	# doctoral students	~# technical support	CORE ¹ construction (MCHF)
CMS 38 countries 184 institutes	ETH Zürich PSI UniZh	15 12 5	13 7** 4	22 3 2	92
ATLAS 37 countries 167 institutes	UniGe UniBe	15 7	10 3	9 4	23
LHCb 15 countries 49 institutes	EPF Lausanne UniZh	10 5	10 3	8 2	8
Total In addition :		69	50	50	123

- CUS has created a « CHIPP Priority Program for LHC Physics Analysis » with 10 post-doctoral positions in the period 2008–2012
 - Rules of FNRS PRO*DOC program modified to be compatible with practical requirements of the LHC program.
 - Request made to FNRS for ~10 doctoral positions.

¹ Federal and Cantonal funding – computing not included

** 5 students co-financed with ETHZ, 2 students co-financed with UniZh

ETH Zurich: crystal, electronics and electronics integration PSI: Photo detector for barrel (APDs)

Lead Tungstate crystals (PbWO₄) Front face. 2.2x2.2cm², Length 23 cm

1 Supermodule: 1'700 PbWO₄ crystals

CMS – Lowering magnets into the cavern

Lowering of central and heaviest element (~ 2000 t) on February 28, 2007

Central part including magnet (2000 tons) (as heavy as 5 Jumbo jets)

Cool-down and mapping of the 4Tesla magnet completed

Last element lowered on 22 Jan 2008.

CMS – ECAL Endcap Construction

ETH Electronics Integration Center (bld 867):

1st EE ready for installation by mid-June.Last EE Dee scheduled for week 30.

CMS – Endcap beam pipe installation

•Collaboration UniZh and PSI

•Silicon pixel detector close to the beam interaction region

•Mechanics and assembly completed 12 March 2008

Emphasis in CH contributions on silicon-based tracking detectors

CMS – Pixel Detector

Pixel detector at PSI May 2008

- Fully assembled after the supply tube and the services added
- Installation time of ~1 week prior to beam closure
- Installation of mockup detector into CMS made
- In parallel development of DAQ, DCS etc ongoing

CMS – Barrel Pixels

Close-up of PPO, beam pipe and installation table during mockup installation procedure for the barrel pixels.

The LHC experiments – ATLAS

1 1 18

PUSKene

The ATLAS Detector Weight: 7000 tons Dimensions: 46m x 22m x 22m Magnetic Field: 2.6 T (solenoid) and 4.1 T (toroid)

Semiconductor **Tracker Geneva**

Readout Electronics (ROD) for **Calorimeters** Geneva

Physics and Computing Preparations

Superconductor and Casings for Barrel Toroid Coil **Bern and Geneva**

Tracker Support Structure Geneva

TDAQ- Trigger and Dataflow Bern and Geneva

Online and Offline Software

The LHC experiments – ATLAS integration

big TGC and MDT muon wheels

bers 5/30/08 Manno

mber 200

The LHC experiments – ATLAS Liquid Argon calorimeter

- •All 3 cryostats cold
- •Temperature stable in time, mean <20 mK
- Liquid purity stable and <<0.5ppm(barrel <210 ppb, EC <150 ppb)
- •Controls, safety systems operational

245 ROD boards for LArand tile calorimeters

A. Clark 18

ATLAS – LAr calorimeter cosmic tests

•

Single cosmic muon pulses fitting very well to the predicted pulse shape

5/30/08 Manno

- First data taking with the full LAr detector (100%)
- Many parameters already available in the online monitoring
 - Digits, Noise, Timing, Cells, Clusters

LVL1Calo triggered events:

Averaged cosmic muon pulse shapes (online monitoring plot, full Barrel C averaged)

Shows good timing achieved over the whole detector A. Clark 19

All detector components installed:

•Barrel SCT + TRT

• 2 End-Caps SCT + TRT

•Full pixel detector + Be beam pipe

• Commissioning of ID in progress

650 out of 2000 forward silicon modules mechanical engineering detector slow control

> SCT surface commissioning: only 0.3% dead channels

Run first alignment checks ~ 5000 tracks

SCT residuals (GlobalChi2) σ ~65 μ m without alignment.

HHP

ATLAS and CMS – Expected Trigger Rates

🕱 Bunch crossing	40 MHz
^ж σ total	70 mb
😤 Event rate	~1 GHz
Homogeneous Number of events/BC	~25
% Number of particles/event ~1500	
# Event size MB	~1.5
# Mass storage rate Hz	~200
• Need to have trigger of high perform	ance

- 6 orders of rate reduction
- complex events and 140 M channels
- Level-1: hardware based at 40 MHz
- Level-2: software based at 100 kHz
- Level-3: event filter at 3 kHz
- Storage at 100-200 Hz

- PC farms
- 3 Petabytes per year raw data for ATLAS
- Similar for CMS and LHCb

strongly involved in trigger

ATLAS – DAQ and Event Filter Hardware

Hardware Installation and Thru-put

- Many Swiss HLT activities:
 - steering framework development
 - persistency of trigger information
 - level-2 calorimeter trigger calibration
 - E_T miss trigger development
 - trigger menus for physics in "express stream"
 - online integration of HLT algorithms

The LHC experiments – LHCb

The LHC experiments – LHCbExperimental Area IP8

Detector installation completed (except the first Muon Station not needed for the 2008 run)

LHCb – TT large surface silicon tracker by UniZh

IT and Telle-1 inner silicon tracker

LHCb common readout boards

The LHC experiments – the LCG computing challenge

The LHC experiments – the Swiss T2 at Manno

Phase-A installed in Dec 07 (225 TB, ~800 kSI2k, 400 cores) For the three LHC experiments in which Swiss groups participate • CMS

• ATLAS • LHCb

- CMS T3 at PSI
- ATLAS T3 at Bern and Geneva
- LHCb T3 at Zurich and Lausanne

Example – ATLAS T3 in Geneva

- ATLAS Grid site since 2005
- local computing facility for the Geneva group
- development and testing of trigger code
- interactive and batch analysis
- free CPU cycles used for ATLAS Monte Carlo production
- current size
 - 61 machines, 188 CPU, 75 TB hardware used for 1st ATLAS data this Summer

 Actual ramp-up schedule ; calculations based on Q2/07 pricing, installed in collaboration with SUN (phase-A completed 1/08)

Phases	Latest installation time	Minimum aggregate compute capacity [kSi2000]	Minimum <i>available</i> disc space [TB]
existing + CSCS GRID cluster	2006/07	214	52
Phase A	Operational: 1/08	~800	225
Phase B	End 2008	1500	420
Phase C	End 2009	2600	800
Operation+repl. /a	>= 2010	2600	800

- WAN: need > 3 Gbps in 2008/09 already 1 Gbps, can get 2x10 Gbps©
- Personnel physicist-informaticienat Manno attached to each experiment desirable

Conclusions

- The LHC will start in coming months and will be the leading scientific instrument in particle physics in coming 10-15 years
 - The coming 12 months will be an exciting but chaotic period for the CH groups and for the first analysis of data at Manno
- The CH contribution to the LHC is important and the T2 centre in Manno is an essential element of support for the physics community
- CHIPP is grateful to the CSCS for their strong collaboration in developing the T2 GRID capability for CH
- We look forward to a continuing fruitful collaboration in the coming 15 years

