
Introducing SaltStack

What is Salt?
Salt is a different approach to infrastructure management, founded on the idea that high-speed communication with
large numbers of systems can open up new capabilities. This approach makes Salt a powerful multitasking system that
can solve many specific problems in an infrastructure.

The backbone of Salt is the remote execution engine, which creates a high-speed, secure and bi-directional
communication net for groups of systems. On top of this communication system, Salt provides an extremely fast,
flexible and easy-to-use configuration management system called Salt States (like Puppet Resources).

Some Customers and Awards

to
install

http://docs.saltstack.com/en/latest/
http://docs.saltstack.com/en/latest/
http://www.saltstack.com/awards/
http://googlecloudplatform.blogspot.ch/2013/12/saltstack-for-google-compute-engine.html
http://developer.rackspace.com/blog/categories/saltstack/
http://www.slideshare.net/yazzatlas/salt-conf-2014installingopenstackusingsaltstackv02-30596636
http://www.infoworld.com/slideshow/135876/infoworlds-2014-technology-of-the-year-award-winners-234225#slide19
http://www.saltstack.com/salt-blog/2014/1/7/saltconf-speaker-preview-saurabh-surana-hp-cloud
http://www.saltstack.com/salt-blog/2014/1/7/saltconf-speaker-preview-saurabh-surana-hp-cloud
http://www.saltstack.com/salt-blog/2014/1/7/saltconf-speaker-preview-saurabh-surana-hp-cloud
http://www.saltstack.com/salt-blog/2014/1/7/saltconf-speaker-preview-saurabh-surana-hp-cloud

● A ‘Minion’ is the local agent.

● Master connects to a Minion by
ZeroMQ, or SSH, to create a:

○ fast
○ persistent
○ PKI based
○ reliable network agents

● Master/Minion messages are
coded as MessagePack format (
like zipped JSON).

● Master runs a ZeroMQ file server
to push configuration files and
Python code (import) on the
Minions.

● SaltStack is written in Python 2.6,
mainly for Linux but it also
supports Solaris and Windows.

Simplest setup,
Master -> Minions.

But also
>1 Master -> Minions.

And
Master -> Master -> Minions

(pic from Linux Magazin 06/14)

http://zeromq.org/
http://docs.saltstack.com/en/latest/topics/ssh/
http://zeromq.org/
http://msgpack.org/
http://zeromq.org/

● Each Minion publishes properties to the Master and to the other Minions e.g.:
○ os
○ osrelease
○ kernelrelease
○ cpu_flags, …
○ called Grains (like Puppet facts).

● The Master dynamically selects the Minions that own certain Grains values to:
○ run an arbitrary Linux command (like cexec/pdsh)
○ run the predefined SaltStack Execution Modules (disk.usage, ..)
○ run distributed Jobs (like nohup cexec/pdsh &)
○ change the Minion state by applying the states files reported in the top.sls file.
○ either in the run or in the change case, the output can be plaintext or JSON.

● Minions states files can be written in:
○ YAML (ugly, but straightforward to write/read)
○ Python (my choice)
○ both use the predefined Salt States , i.e. the usual File/Pkg/Service/User/Group/Mount ... operations

(like Puppet Resources)

● There is a handy Python API in front of the Master and the Minion.

http://docs.saltstack.com/en/latest/topics/targeting/grains.html
http://docs.saltstack.com/en/latest/ref/modules/all/
http://docs.saltstack.com/en/latest/topics/jobs/index.html
http://borgstrom.ca/2014/02/15/building-a-pythonic-interface-to-saltstack-states.html
http://borgstrom.ca/2014/02/15/building-a-pythonic-interface-to-saltstack-states.html
http://docs.saltstack.com/en/latest/salt-modindex.html#cap-s
http://docs.saltstack.com/en/latest/ref/states/all/salt.states.pkg.html#module-salt.states.pkg
http://docs.saltstack.com/en/latest/ref/states/all/salt.states.service.html#salt.states.service.running

Minions Grains (like Puppet facts).

‘MYGRAIN’ was defined by me, at runtime.

Note the multi master definition.

In the next slide we’re using the Grain nodename to run
the Execution Module disk.usage on a Minion.
i.e. we’ll run the usage function of /usr/lib/python2.6/site-
packages/salt/modules/disk.py

Execution Module example:
master ~# salt -G ‘nodename:t3vmui01*’ disk.usage

http://docs.saltstack.com/en/latest/ref/modules/all/
http://docs.saltstack.com/en/latest/ref/modules/all/

Another ‘disk.usage’ remote execution on that Minion,
this time by IPython + the SaltStack Python API

master # /usr/bin/ipython

In [1]: import salt.client

In [2]: saltclient = salt.client.LocalClient()

In [3]: t3vmui01_disk_usage = saltclient.cmd('nodename:t3vmui01*', 'disk.usage', expr_form='grain')

In [4]: print t3vmui01_disk_usage
{'t3vmui01': {'/tmp': {'available': '1838008', '1K-blocks': '1975888', 'used': '35892', 'capacity': '2%',
'filesystem': '/dev/md3'},
'/var': {'available': '8704332', '1K-blocks': '9592544', 'used': '376572', 'capacity': '5%', 'filesystem':
'/dev/md2'},
'/boot': {'available': ...

master # cat t3source.sls
#!pyobjects

def t3source(FILEPATH):
 import os
 import re
 HOSTNAME = os.uname()[1] # t3ui01
 HOSTTYPE = re.split('[0-9][0-9]', HOSTNAME)[0] # t3ui
 OS = __salt__['grains.get']('os_family') # RedHat
 OSREL = __salt__['grains.get']('osrelease')[0] # 5
 SOURCE = 'salt://' + 'OS/'+OS
 return [
 SOURCE + '/generic/files' +FILEPATH+ '__' + HOSTNAME ,
 SOURCE + '/generic/files' +FILEPATH+ '__' + HOSTTYPE ,
 SOURCE + '/generic/files' +FILEPATH ,
 SOURCE + '/'+OSREL+'/files'+FILEPATH+ '__' + HOSTNAME ,
 SOURCE + '/'+OSREL+'/files'+FILEPATH+ '__' + HOSTTYPE ,
 SOURCE + '/'+OSREL+'/files'+FILEPATH
]

Change the Minion state often means pushing files;
I’ve defined a Python function to get the files from the Master

master # find OS/RedHat | head -10
OS/RedHat
OS/RedHat/5
OS/RedHat/5/files
OS/RedHat/5/files/etc
OS/RedHat/5/files/etc/yum.conf.special
OS/RedHat/5/files/etc/quotatab__t3wn30
OS/RedHat/5/files/etc/quotatab__t3wn
OS/RedHat/5/files/etc/yum.conf.orig
OS/RedHat/5/files/etc/gmond.conf__t3vmui01
OS/RedHat/5/files/etc/ldap.conf__t3ui10
...

The Minion files saved on the Master

master # cat top.sls
base:

 'os:ScientificLinux':
- match: grain

 ...
- states.crond
- states.smartd
- states.python
- states.nagios.common

 'uidev':
- match: nodegroup
- states.gcc
- states.snmpd
- states.nagios.check_linux_raid
- states.xrootd
- states.t3ui

master # cat states/smartd/init.sls

from salt://t3source.sls import t3source

with Pkg.installed("smartmontools"):
 Service.running("smartd", enable=True)
 with Service("smartd", "watch_in"):

File.managed('/etc/smartd.conf' ,
 user='root',
 group='root',
 mode='0444',
 source= t3source('/etc/smartd.conf'))

the 1st with means: if you can install "smartmontools" then
enable the service "smartd"
the 2nd inner with means: service "smartd" must to be restarted
if something enclosed by this with, in this case one File, changes.

Execution order will be generated respecting top-down top.sls
BUT at runtime it also depends from the requires in the state logic

To change the Minions state we map ‘states’ (YAML or Python
code) to Minions by using their Grain values

http://docs.saltstack.com/en/latest/ref/states/compiler_ordering.html
http://docs.saltstack.com/en/latest/ref/states/compiler_ordering.html
http://docs.saltstack.com/en/latest/ref/states/compiler_ordering.html
http://docs.saltstack.com/en/latest/ref/states/compiler_ordering.html
http://docs.saltstack.com/en/latest/ref/states/compiler_ordering.html

smartmontools:
 pkg:
 - installed

smartd:
 service:
 - running
 - require:
 - pkg: smartmontools
 - watch:
 - file: /etc/smartd.conf

/etc/smartd.conf:
 file.managed:
 - source:
 - salt://OS/RedHat/5/files/etc/smartd.conf
 - user: root
 - group: root
 - mode: 444

The previous states/smartd/init.sls, rewritten as YAML

minion # salt-call state.show_lowstate --output=json
{

"local": [
 {
 "group": "root",
 "name": "/tmp",
 "mode": "1777",
 "state": "file",
 "__id__": "/tmp",
 "fun": "directory",
 "__env__": "base",
 "__sls__": "states.tmp",
 "order": 10000,
 "user": "root"
 },
 {
 "group": "root",
 "name": "/etc/motd",
 ...
 "order": 10001,

Observing the top.sls order before to run a Minion change

 {
 "group": "root",
 "name": "/etc/inittab",
 "mode": "0644",
 "source": ["salt:
//OS/RedHat/5/files/etc/inittab__t3vmui01",
"salt://OS/RedHat/5/files/etc/inittab__5.7",
"salt://OS/RedHat/5/files/etc/inittab__t3vmui",
"salt://OS/RedHat/5/files/etc/inittab"
],
 "state": "file",
 "__id__": "/etc/inittab",
 "fun": "managed",
 "__env__": "base",
 "__sls__": "states.general_etc",
 "order": 10002,
 "user": "root"
 },

Normally, when a state fails SaltStack continues to execute the remainder of the defined states and will only
refuse to execute states that require the failed state.
But the situation may exist, where you would want all state execution to stop if a single state execution fails. The
capability to do this is called failing hard.

● failing hard can be enforced globally (it remembers the Kickstart behaviour)
● or state by state
● because of the insane amount of time that I’m investing designing/testing states it’s really unexpected the

failure of a Minion change, so I want to immediately stop everything and double check !
● This could lead to write less ‘requires’ logic in my states and be heavily bounded to the order dictated by the

top.sls file, but it’s my duty to write solid states.

master # cat /etc/salt/master.d/failhard.conf
failhard: True

http://docs.saltstack.com/en/latest/ref/states/failhard.html

If something fails during the Minion change
should SaltStack go ahead, or immediately stop ?

http://docs.saltstack.com/en/latest/ref/states/failhard.html
http://docs.saltstack.com/en/latest/ref/states/failhard.html

PROS:
● I can write my configurations in Python !
● Pushing configuration files, installing Pkgs or restarting Services is one of the

SaltStack features, not the feature.
● Google, Rackspace, HP and others are already using it for their Clouds.
● Minions can also:

○ Send events to each other (like distributed inotify)
○ Publish live data to each other (users connected, load, ...)
○ Send their output to MongoDB, MySQL, Postgres and many others.

CONS:
● New, the Doc is a bit chaotic and it took me a lot to see the big picture.
● Solaris support is several versions behind the Linux version.
● It requires to install and turn on yet another agent on the Minion ; competitors like

Ansible just use SSH (btw it also uses YAML, it’s also written in Python)

Concluding
(but there is much more to be said ...)

http://www.ansible.com/home
http://www.ansible.com/home

